
cients  K I and KII differ  f rom zero ;  these  cannot be de te rmined  s epa ra t e ly  by the method used.  However,  with 
an analys is  of the conditions for the propagat ion  of a c rack ,  the value of the r a t e  of evolution of e las t ic  energy 
i tself ,  which !is de te rmined  d i rec t ly  in the given method,  is impor tant .  The method can be applied to bodies 
of complex f o r m  with c r a c k s  a lso  having a complex fo rm.  
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S O L U T I O N  IN T H E  F O R M  O F  S E R I E S  O F  L E G E N D R E  

P O L Y N O I ~ [ I A L S  O F  AN A X I S Y M M E T R I C  M I X E D  P R O B L E M  

FOR A HOLLOW ELASTIC CYLINDER 

G.  V .  I v a n o v  UDC 539.3 

In this paper  it is shown that  the method p roposed  in [1] for the solution of a plane mixed p rob lem of the 
theory  of e las t ic i ty  can be used also for the solution of an a x i s y m m e t r i c  mixed p rob lem for a hollow elast ic  
cyl inder .  

1.  S t a t e m e n t  o f  t h e  P r o b l e m  

In the case  of  a x i s y m m e t r i c  e las t ic  deformat ion  the equations of equi l ibr ium and Hooke ' s  law can be 
wri t ten  in the fo rm 

Op aT 0"~ Oq 

( o') ( 
p - - r  ) ,e-J-2~t~ -----0, q - - r  ke-}-2~t = 0 ,  

(0~ 0v) v �9 ~--p~r "gy '+~ ' z  = 0 ,  t - - ~ , s - - 2 ~ t - v - = O ,  

where  

Ou Ov v v E  i 
e = ~ + ~ + - f - ,  k = ( l + ~ l ( t _ 2 v ) ,  0 ~ < ~ - ,  E, l~:>0,  

p = r f f z ,  q = r i f t ,  T ~ -  r f f r z  , $ = f l y ,  u ~ u z ,  v ~- Ur, 

x ~ g --  Zo, y ~ r - -  r0; 

r ,  ~,  and z are  the cyl indr ica l  coord ina tes ;  ~r,  ~.~, Crz, Crrz, t i t ,  and uz are  the components  of the s t r e s s  ten-  
so r  and the d i sp lacemen t  vec tor  in the cyl indr ica l  coordinate  sys t em;  yl+ and Y2 are  the m a s s  fo rces ;  z 0 and 
r 0 a re  constants ;  E is Young~s modulus;  p is the shea r  modulus;  and v is Poissonts  ra t io .  
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We confine o u r s e l v e s  to the case  where  Ix[ ~ 1, lyl ~ 1, r 0 > 1, and by t r a n s f o r m a t i o n  of the sought func- 
t ions the p rob lem is reduced  to the finding of the functions p, q, r ,  t, u, and v, which sa t i s fy  the equations 

dp o.t o'c Oq ~-7- + ~-u + fi = O, ~ - + ~ - - - t  + 1 ,=  O, 

Ou (X~ + 2g-~)  + / .  = O, p - - r Q . e + 2 F ~ ) q - ] , "  O, q - - r  

( o,, o~ ) o 
x - - t i t  ~y +O-~x q - / 5 = O '  t - - ~ . e - - 2 ~ t - g - = 0 ,  

au Ov v 
s = ~  + ~-~ + r 

and the boundary conditions 

(pu)~.• = (qu)u=• = (Tv)~_• = (vu)~=+t = O, (1. l)  

where  f~, a = 1 , . . . ,  5 are  known funct ions  s u m m a b l e  in square  with r e s p e c t  to ft = {x,y Ix E[ - 1, 11, y E [ - 1 ,  11}. We 
a s s u m e  that in each of  Eqs.  (1.1) one of  the functions being mult ipl ied is z e r o  on the ent ire  s ide  o f  the square .  

If in the c a s e  o f  the d i s p l a c e m e n t  o f  the cy l inder  as an abso lute ly  r igid body we  have the equation u = O, 
then the condit ions  (1.1) wi l l  be supplemented  by the equation 

~ ud~ = O. (1.2) 

In this case  the function fl cannot be a r b i t r a r y ;  it mus t  sa t i s fy  the condition 

I Ildg. = O. 

2 .  A p p r o x i m a t e  S o l u t i o n  

We denote 

t l t  

k~O i ~ 0  k=O i = 0  

n--I m + l  n,4-1 m--I 
~tn ~nttlt n t t t  

37"= Z Y, ~., P.Q,, 2 = Y~ Y, ~., P.O,, 
k=O i=O h~O i = 0  

n m - - I  n - - t  m 

k=O i f 0  k - - 0  i=O 

n m + t  n4-1 m 
uTm ~ ~.j .m UTrn = u., Phqi, Y' ~ " "  = v~i PAQI, 

hm0 i = 0  k ~  0 t ~ 0  

n+2 m - - I  n - - t  m + 2  

= = vkt PkQt, uht PkO~, 
, ~ 0  t - -0  ~ i=O 

n - - I  m 

thi Pt~Q~. 
k=O i = 0  

(2.1) 

nm nm nm nm nm t~Am Here  n, r e > l ;  Pki , qki ~ Tki , Uki , Vki , and a re  constants ;  Pk=Pk(y)  and Ql--Qi(x) a re  Legendre  poly-  
nomina ls  that  a r e  or thogonal  on the segment  [ - 1 ,  11; k and i a r e  powers  of the polynomia ls .  

We s t ipulate  that  the functions (2.1) sa t i s fy  the equations 

f (~"" + ~ ' ~ -  1~1 P.O,da =0. k---O,, . . . . .  . .  i=O, t . . . . .  m--t; 
\ Oz Oy - -  , 

\ Ox + ~ -  +Jr  PhQl d~=O'  

k = O , t  . . . . .  n - - t ,  i = O , !  . . . . .  m; 

2F ""gUx } -4- ]~ pkOidQ = O, 
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! + m)+ ,,] , , + + o  = o, 

k = O , t  . . . . .  n, i = O , i  . . . .  ,m;  (2.2) 

" + )-'P'/n Pt, Q+ d f i = O ,  
o 

k=- 0, t . . . . .  n-i- t ,  i = 0 , 1  . . . . .  m - - t ;  

ov~rn~ 
]~] PkQid~ --= O, 

k = O , t  . . . . .  n - - t ,  i = O , t  . . . . .  m ,-[- t ;  

tnm --  ~,e n m -  2F--7"] PkQ f l f l  = O, 

k = O , t  . . . . .  n - - t ,  i = 0 ,  t . . . . .  m, 
i , r t  tltt 

e,,,,m 0-~" Ov'~" ,'o 
= Oz +'-'~-~s + - 7  "' r = r o + ! / ,  r o > i  

and the z e r o  bounda ry  condi t ions  

( p - - u 7 % = ~ ,  = (q-~v7%=• = (+r~v~) .=~ ,  = ( + ~ , ~ % = •  = 0. (2.3) 

It is a s s u m e d  that  in each  of  Eqs .  (2.3) one of  the f a c to r s  [just as in (1.1)] is z e r o  on the en t i r e  s ide of  the 
s q u a r e .  

i f  the fo rmu la t i on  o f  the p r o b l e m  conta ins  Eq. (1.2), then in the s y s t e m  (2.2) the equat ion 

\-W-~ + - - ~ y + h  d ~ = 0  

is  r e p l a c e d  by the equa t ion  u nm =0.  

Equat ions  (2.2) and (2.3) f o r m  a c losed  s y s t e m  re l a t i ve  to the cons tan t s  in the funct ions (2.1). 

F r o m  (2.2), (2.3) we find 

a.; T M  ovT~ 0 2 
o 

( ~ )  ,,+.,,,,+',+, /o,+,,, o,,~,,,?] 
= , o + ,  +,,, + , + { ~ - )  + - ~ t + + + ]  j. 

(2.4) 

Since r > - r o -  1, we have 

h a 

Using the inequal i t ies  (4.8), (4.10), and (4.11) of  [11, we can  p rove  that  

I I  nrnl+ +, nm:p , n CEI/2 max ill ui II, Jj l/2 lJ: rim, + +~"!1, i] v~"lN <~ (2.6) 

where  the symbo l  I [ I [ denotes  the n o r m  in L2(~2). By the l e t t e r  C in (2.6) we have denoted a cons tan t  not 
depend ing  on n and m.  F r o m  (2.3) - (2.6) we find that  the z e r o  solut ion o f  the homogeneous  s y s t e m  of  equa-  
t ions  (2.2), (2.3) is unique and, conseouent ly ,  the d e t e r m i n a n t  of  this  s y s t e m  is n o n z e r o .  

The funct ions (2.1), which sa t i s fy  the s y s t e m  (2.2), (2.3), a re  the app rox ima te  solut ion of  the mixed p rob -  
l em f O r n a h o l l  ~ cy l inde r .  The funct ions pnm, qnm a r e  an app rox ima t ion  of  the f imctions p and q. The func-  
t ions  T 1 , T 2 can be r e g a r d e d  as an a p p r o x i m a t i o n ,  mul t ip l ied  by r ,  of  the s h e a r  s t r e s s e s  onr~laneSmWith 
n o r m a l s  d i r e c t e d  along the z and r axes ,  r e s p e c t i v e l y .  The pa r i ty  law of  the shea r  s t r e s s e s  ~i , T~ is 
app rox ima te ly  sa t i s f ied  by 
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.f ( + 7 " - ' q ' )  V ~ ? , d ~  = O, k = O, i . . . . .  , , - -  i ,  ~ = O, i . . . .  , , , - -  i .  
0 

In the role  of an approximation of  the function T we can in fact consider  the function 

n--! m~| rt-t-I l l l i - - " l  

~-0,=0 , '  k ~ , + E  Z , ,  , ~ ,  k=n i~0 

Obviously Tnm sat isf ies  Eos.  (2.2), if Instead of r ~  m, r~  m we substitute ~nm, and it approximately sat isf ies ,  
as is indicated in (2.3), the boundary conditions (1.1) for r .  

3 .  C o n v e r g e n c e  o f  A p p r o x i m a t e  S o l u t i o n s  

Functions p, q, r ,  u, and v sat isfying the equations 

! [q-- r (~.'-F 2it ~ ) + lil o~id.Q = O, ~f [P -- r(Le-F 2tt ~ )  + l,l totdft =O, 

![ [o,, 
o (3.1) 

k az u q- p.-g-~ drY=O, v h-q.-T~ ~ d.q=O, 

o+)j W - ~ v + ~ , t ~  + ~ t in=O,  

~"" --hu.ldf~=O, .I['r ~ o,.. .I(p.~..~z..}_ 0% v,] dQ. ----- 0 , ~-g-~ 7;~+q--~ +( t - - l ._ )  
f l  o 

and the ineouality 

h + l i v + h ~ + h ~ + h  ~+7-~ 

+ + 
- ' - = s  Js r , 

are called the general ized solution of  the mixed problem for a hollow elast ic  cylinder.  Here 

e = OulSz + OvlOy + v/r, 
aJk, k = l ,  2 . . . . .  6 are  a rb i t r a ry  functions belonging to I~(f2); p , ,  o , ,  T , ,  u , ,  v ,  are a rb i t r a ry  functions 
sat isfying the conditions 

( p , u , ) : _ •  ( q , v , ) . _ •  = ( ~ , v . ) . _ •  = ( T . u . ) ~ = ~ 1  = O. 

Op. ~q~ P*' q*' az '  ~ L~ (f~), (3.3) 

�9 , ,  u , ,  v, ~ W2 l (Q). 

It is assumed that p, q, ~, u, v have c~adrat ical ly summable,  with respec t  to ~, derivat ives and general ized 
sums of der ivat ives  which enter into (3.1) and (3.2); one of the factors  in (3.3) [the same as in (1.1)] is zero 
over  the entire side of the square.  

F r o m  the sequence of the solutions (2.1) we can ext rac t  a subsection which weakly converges in L~(~) to 
the general ized solution. If  there  exists a general ized solution which sat isf ies the conditions (3.3), then for n, 
m +  oo the ent ire  sequence of solutions (2.1) converges to it. These asser t ions  are  proved in the same way as 
the analogous asser t ions  in [1]. 
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4 .  R e d u c t i o n  o f  t h e  P r o b l e m  t o  a S e q u e n c e  o f  B o u n d a r y -  
V a l u e  P r o b l e m s  f o r  O r d i n a r y  E q u a t i o n s  

We denote 

n + t  n 

n + t  n---I 

where  p~, q~, r~ ,  U~, ~ ,  ~ are  functions of x; Pk=Pk(y)  are  
polynomial .  

n - - i  

n-{-2 

U,", = ~ 0  U2/'" (4.1) 

n - - I  

t,~ = E t~p,, ,  
k=O 

Legendre  polynomials;  and k is the degree  of the 

The approximate solution of the mixed problem for a hollow e las t ic  cyl inder  is sought in the form of the 
functions (4.1) which sa t is fy  the equations 

! < ) _l  \ o z +'~y +11 P~dy=O, 

[ (  " ,]  p~ --  r )~e,, -{- 21, "~x ] q- 1a P~flY = O, S 
il <,1 q ~ - - r  )~e~+21*~]- -c f4  Phdg=O, k = O , l  . . . .  ,n;  

x'~--I~r\'~u + +I5  P~dy=O, k = O , l  . . . . .  n + l ;  

! 

5 ) ~ to + f~ Phdy --= O, 

1 

l S[ : < < ]  -~ x~--p.r~,-~-y + ~ ] - t - [ 5  d//=O, k = O , t  . . . .  , n - - t ,  

0,4 o~,; 4 
e,, = -~-~ + - ~ -  + -  7 - 

(4.2) 

and the boundary conditions 

( q : ~ ) ~ = •  = ( , : u : ) ~ = ~ ,  = 0; (4.3) 

( n n U n ~  - -  f nn t ,  Ln. "~ ~ n n ~ . /x=+t--  ~-k ~j~=• (Thvh)~=+i = O, 
k = 0 ,  i . . . .  ., n - - i .  

(4.4) 

It is assumed tha t  in each of Eas.  (4.3) one of the fac tors  i the same as in (1.1)] is zero  over  the ent i re  side of 
the square .  

I f  the formulat ion of the problem contains Eq. (1.2), thenthe sys tem (4.2), (4.3) is supplemented by the 
eauation 

1 

f = 0 
- - i  

We can introduce the concept of a genera l ized  solution of the boundary-value problem for equations 
(4.2), (4.3) with the boundary conditions (4.4), analogously to the corresponding concept in [1]. The proofs of 
the exis tence and uniqueness of this general ized solutionp its convergence to the general ized solution to the 
mixed problem for a hollow e las t i c ' cy l inder  and a re  analogous to the corresponding proofs  in [1]. 
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P R O B L E M  O F  P L A N E  S T R A I N  O F  H A R D E N I N G  

A N D  S O F T E N I N G  P L A S T I C  M A T E R I A L S  

A.  F .  R e v u z h e n k o  a n d  E .  I .  S h e m y a k i n  UDC 539.37 

w 1. The c l a s s i ca l  descr ip t ion  of the kinematics of deformation of a solid medium is based on the assump-  
tion o f  sufficient smoothness  of the displacement  field. The smoothness assumption allows us to introduce the 
concept of a s t ra in  t ensor  and make use of the tool of differential  equations for the descript ion of the deforma-  
tion of the mater ia l .  However, there  exist broad c lasses  of motion of the medium where the displacement can 
be connected with the appearance of  a plast ic s train.  Experiments  with various mater ia ls  show that the mech-  
anism of plast ic  s t ra in  is connected with localization of shear  along cer ta in  surfaces  [1, 2]. The latter s igni-  
fies that on these cer ta in  surfaces  the displacement  vector  experiences a violent break. In the general  case 
this c i rcumstance  turns out to be important and must  be taken into account when descr ibing plastic de forma-  
tion. Making cer ta in  assumptions which are  justified from a mechanical  viewpoint, we can descr ibe  a non- 
smooth displacement  field by fair ly simple means with the aid of a collection of smooth functions. 

As an i l lustration, we shall consider  the case of a single function of a single variable.  By F(x) we denote 
the original  function having a violent break at the points x i. We assume that the distances between the breaks 
are  small ,  that the function F(x) is sufficiently smooth between the break points, andthat  the values of the de- 
r ivat ives  of F(x) on the right and on the left of the break points are equal to one another; i.e., the function 

F' (z) for x # xi, 

p ( z ) =  F ' ( x i •  for x = z i  

is sufficiently smooth. 

Let f(x~ be a smooth function sat isfying the conditions f(x i) = F(x i + 0) and P (x) = ~ p (z) dz.  Then the 

original  function F(x) can be c h a r a c t e r i z e d  by a pair  of smooth functions f(x), P(x) and a sequence of break 
points x i (Fig. 17. The function fix) has  the meaning of averaging the original  function, and it charac te r i zes  
(with a cer ta in  accuracy)  the values of F(x) over the entire domain of definition. The function P'(x) - f'(x) 
cha rac te r i zes  the difference in local behavior of the original  and the averaged functions, and for given break 
points determines  the magnitude of jumps of the original  function. Thus, a jump of the function F(x) at the 
point x i +t with an accuracy  up to l~ equals { f' (x i) - P'(xi)} l i where / i = x i  + t -  xi is the distance between the 
adjacent break points. 

Analogously, we shall consider  the case of a vector  functionV =Vlel +V2e 2 of the vector  argument r = 
xie t + x2e 2 (el, e~ is the or thonormed basis). Let  l <<1 be a charac te r i s t i c  dimension of the regions where the 
function V(r) is sufficiently smooth. We shall call such regions elements .  We assume that for the original  
functions there exists a smooth average v(r) such that v(r i) =V(r i) at the centers  of elements r i ;  on the bound- 
ary separatin~ elements with the centers  at the points ri+ r i + ~ the break of V(r) with an accuracy  up to !r i + l - 
riI  2 equals A(ri)(r i + l -  ri), where A is a tensor  of the second rank with smooth components Akin, k, m= 1, 2. A 
smooth vector  field v(r) and a tensor  field A(r) are put in correspondence  with the original  field V(r). It can 
be shown that the descript ion thus introduced imposes the following constraint  on the class  of discontinuous 
functions: Onthe break lines the values of one-sided derivat ives  OVk/OX m must  be equal to one another. It 
is obvious that 
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