cients Kp and Ky differ from zero; these cannot be determined separately by the method used. However, with
an analysis of the conditions for the propagation of a crack, the value of the rate of evolution of elastic energy
itself, which is determined directly in the given method, is important, The method can be applied to bodies
of complex form with cracks also having a complex form.
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SOLUTION IN THE FORM OF SERIES OF LEGENDRE
POLYNOMIALS OF AN AXISYMMETRIC MIXED PROBLEM
FOR A HOLLOW ELASTIC CYLINDER

G. V. Ivanov UDC 539.3
In this paper it is shown that the method proposed in {1] for the solution of a plane mixed problem of the
theory of elasticity can be used also for the solution of an axisymmetric mixed problem for a hollow elastic
cylinder,

1. Statement of the Problem

In the case of axisymmetric elastic deformation the equations of equilibrium and Hooke's law can be
written in the form :

ap T . at dq .
-&4—5;4-?1—01 Ty W—t+Yz~—0v
p—r(xe+zp—j§)=o, q_r(xa+2p%%)=o,

g I
t—pr(—é—j— 5—;—):0, t—ke—-Zp—:—-:O,

where

du v v vE ' 1
o T Ay 0Sv< Ee>0,
P =710 § =70, T=1T0, = 0p, U=1U; U =1U,

=2 — 2y Y=T-—1"g
r, ¢, and z are the cylindrical coordinates; oy, 0,,, 0., 0.,, uy, and uz are the components of the stress ten-

sor and the displacement vector in the cylindrical coordinate system; y,. and Yo are the mass forces; z, and
T, are constants; E is Young's modulus; u is the shear modulus; and v is Poisson's ratio.
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We confine ourselves to the case where |x|=1, |y|=1, ry>1, and by transformation of the sought func-
tions the problem is reduced to the finding of the functions p, q, 1, t, u, and v, which satisfy the equations

ap at at dq
iz dy Fh 0, dz l dy t+fa 0,
du : v
por(bet W)+ =0 g—r(re+ 2+ f=0,

'r—pr(g—:—{—%)—{—f,:O,‘ t—).s——?.p.—t—:: .

du | v v
E=g Ty T
and the boundary conditions
(PU)xmtt = (@hy=21=(W)emis = (Wymps =0, 1.1

wherefy, a=1,..., 5are known functions summable in square with respectto Q= {x,ylx €-1,1},y€ [-1, 1]}. We
assume that in each of Eqs, (1.1) one of the functions being multiplied is zero on the entire side of the square,

If in the case of the displacement of the cylinder as an absolutely rigid body we have the equation u=0,
then the conditions (1.1) will be supplemented by the equation

[ ude =o0. (1.2)

In this case the function f; cannot be arbitrary; it must satisfy the condition

{ f,d0 = 0.
b

2. Approximate Solution

We denote

n

n m m
=2 2 parPaQi = 0_2; i P

R=0 i=0 A=0i=0
n—1m4i ndim—1
"= 2 2 ‘tz;nphog, B = 2 2 Tg;nthlv
R=0 i=0 k=0 i=0
n m-—1i n—t m
m
ugm = 2 2 u:i P;‘Qg, Ugm= E 2 V:;"Pn()u
k=0 i=0 k=0 i=0 (2.1)
n m4t ndt m
m m
Ut = 3 D uilPyQ,, vim= 3 X vitPuQ,,
R=0 i=0 Pr=y ¥}
n+2 m—1 ™ n—imi2
L N .
uph= 3 D upr PyQ;, 3™ = 2 X Ui'Pu0ys
R=0 im0 R=0 i=0

n—im
= 3 3 6TPQ,.

k=0 i=0

Here n, m=1; pﬁim, qﬁ{nA legn . ul::in , v?:in , and t{ldm are constants; Py =Py(y) and Q =Qi(x) are Legendre poly-

nominals that are orthogonal on the segment [—1,1]; k and i are powers of the polynomials.
We stipulate that the functions (2.1) satisfy the equations

5 ("l;':" +"_:2;_+ f,) P,Q,dQ=0, k=01, ...,n, i=0,1, ..., m—1;

F. 2 Adiad nm nm
§(a—’, FT ) PAQER =0,

k=0,1,..., n—1,i=0,1,...,m;

g[pm-_ (14 20 20) 4 12| a0t = o,

\
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V[énm__,( e 4ol )+j4]PdeQ_O
8
k=0,1,....n, i=0,1,...,m; (2.2)

a

([ —wr (%5 + 25 ) 4 1| i =0
Q

. k:_'oviv'--yn““i, i—:o,i,-..,m'—i;

nm g

[[om— e (27425 ) 4 1| Prguaa o
8 /
k=0,1,...,n—1,i=0,1,...,m4+1;

(t""‘ —Ae"™ — 21 Ijr—) PyQ,dQ =0,

p——

k=0,1,....n—1,i=0,1,...,m

nm nm nm
ouy” T Yo

9z + ay + i, r=ro+ ¥, T°>1

r

nm

and the zero boundary conditions
(pnmu?m)x=il (qnmvmn)y_J_1 (Tﬂmvnm)x—il (‘; muzm)y st = 0. (2.3)

It is assumed that in each of Egs. (2.3) one of the factors [just as in (1.1)] is zero on the entire side of the
square,
1f the formulation of the problem contains Eq. (1.2), then in the system (2.2) the equation

f(2m 4+ 1 1) o

Q

is replaced by the equation uf,lom =0,

Equations (2.2) and (2.3) form a closed system relative to the constants in the functions (2.1).

From (2.2), (2.3) we find

7?m m avﬂ‘m
S[fxu "‘+fzvnm+f3 ax +f4 ay +f5( +‘%)}d9 = ‘S’gnmrdQ,
* - (2.9)

gulm 2 arnm\ 2 om\ 2 i Junm Sunm 2
gnm=x<s"m)=+2u[( ) +(Qa’y) +<—‘i—~j +-z~(—af, +52 ) ‘

Since r=r; — 1, we have

Enm= \ gnmdQ < ,-_o—_l':—I 'Sq gnmrdg' (2.5)
Q Q

Using the inequalities (4.8), (4.10), and (4.11) of 1], we can prove that

max { ui™f, | ud™{, 17", |o5™ ) < CEY2, 2.8}
where the symbol | | || denotes the norm in L,(R). By the letter C in (2.6) we have denoted a constant not

depending on n and m, From (2.3) — (2,6) we find that the zero solution of the homogeneous system of equa-
tions (2.2), (2.3) is unique and, consequently, the determinant of this system is nonzero.

The functions (2.1), which satisfy the system (2.2), (2.3), are the approximate solution of the mixed prob-
lem for a hollow cylinder. The functions p®™, q®™ are an approximation of the functions p and q. The func-
tions T?‘m, Ty can be regarded as an approx1mat10n multiplied by r, of the shear stresses on rglanes with
normals directed along the z and r axes, respectively. The parity law of the shear stresses 7} 72 is
approximately satisfied by
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[ (m —gm) PR =0, E=0,1,...,n—1, i=0,1,...,m—{.
Q

In the role of an approximation of the function 7 we can in fact consider the function

n—1{m+i n44 m—1

= 2 V 2" Pin'*'E §T Q-

Obviously 2™ satisfies Eags. (2.2), if instead of T?m, r;]m we substitute 7™ and it approximately satisfies,
as is indicated in (2.3), the boundary conditions (1.1) for 7.

3. Convergence of Approximate Solutions

Fuanctions p, q, T, u, and v satisfying the equations
i(-g—:+%+fx)(old9=0i bf(;,ﬁ 2ty 1)o@ =0,
§[q—r(le+2u—f,——;)+f.]w.d9= 0, bﬂp—r(uwp 2) 4 1| o2 =0,

iS(t —re—2p —lri-) 0ydQ = 0, 5[1: - pr(a“ + g;) + f,] 0;dQ =0, 3.1)

§(ap‘u+ ta )dQ 0, é‘(aq'v-f-q,ay)d(} 0,
5[ fut Zevtn, (34 Z)]aa=o,
j(pa;;+taa_'l;—fxut)d9=0, Y[ av.+qa:, (l—fg)v,]dQ=O
a

and the inequality
[ , ou v du | ov
[l ot gt 1565+ 55)| 0>

L 3 R B B e

are called the generalized solution of the mixed problem for a hollow elastic cylinder, Here
‘& = 0u/éx + dv/dy 4 vir,
w, k=1, 2, ..., 6 are arbitrary functions belonging to 1,(?); p,, a,, 7,, u,, v, are arbitrary functions
satisfying the conditions
(Potia)sm it = (@e04) sy = (TaVa) sy = (Tatta), sy = 0,
Pe 0o, 28 L, @), (3.3)
Tor Uy, Uy € wh ().

It is assumed that p, g, 7, u, v have quadratically summable, with respect to Q, derivatives and generalized
sums of derivatives which enter into (3.1) and (3.2); one of the factors in (3.3) {the same as in (1,1)] is zero
over the entire side of the square,

From the sequence of the solutions (2.1) we can extract a subsection which weakly converges in L,(?) to
the generalized solution, If there exists a generalized solution which satisfies the conditions (3.3), then for n,
m— « the entire sequence of solutions (2.1) converges to it. These assertions are proved in the same way as
the analogous assertions in [1].
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4, Reduction of the Problem to a Sequence of Boundary-
Value Problems for Ordinary Equations

We denote

n n n-1

Pa= ZPPh Ga= D P = X TP
n41 n n+2

= Zare = Fare =g @

nti n—t n—i

v, = 2 viPy, V= > VPP, b= X thPy,
k=0 k=0 k=0

where pﬁ, ak, TR, uft, v}, tﬁ are functions of x; P =P (y) are Legendre polynomials; and k is the degree of the
polynomial,

The approximate solution of the mixed problem for a hollow elastic cylinder is sought in the form of the
functions (4.1) which satisfy the eqguations

1
), (2o 422t ) Paay =0,

Si[pn—r(nn-{-Zu r )+f3] Pydy =0,
—1

1

/ v,
S qn—r(7»an+2p-5;)+f4 Pdy=0, k=0,1,...,m

24

1 o v

i,
S[T;—pr(g—yf-[-%)%—fs}Phdy:O, E=0,1....,n4+1;
—

(4.2)
1
o1, @
§ (7,—+~"—’i~t,.+f2) Py =0,
* /
‘ -~
S (t — e —2p -—) Pydy =0,
1 ,—— . . .
) du,, av,,
S‘{Tn_pr('57+’3;)+f5]dy=0, k=0511'-'!n""17
du,, v
Bn = 23 + +—r2—
and the boundary conditions
'(qnv;)u=ii = (T:uu;)u=i.-l =0; 4.3)
(PR )ems1 = (PR )it = (V3 )5y = 0, (4.9

k=0,1, ..., n—1,

It is assumed that in each of Eas. (4.3) one of the factors [the same as in (1.1)] is zero over the entire side of
the square.

If the formulation of the problem contains Eq. (1.2), then the system (4.2), (4.3) is supplemented by the
equation
1 .
{ updz = 0.
=4
We can introduce the concept of a generalized solution of the boundary-value problem for equations
(4.2), (4.3) with the boundary conditions (4.4), analogously to the corresponding concept in [1]. The proofs of
the existence and uniqueness of this generalized solution, its convergence to the generalized solution to the
mixed problem for a hollow elastic cylinder and are analogous to the corresponding proofs in [1].
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PROBLEM OF PLANE STRAIN OF HARDENING
AND SOFTENING PLASTIC MATERTIALS

A. F. Revuzhenko and E, I. Shemyakin UDC 539.37

§1. Theclassical description of the kinematics of deformation of a solid medium is based on the assump-
tion of sufficient smoothness of the displacement field, The smoothness assumption allows us to introduce the
concept of a strain tensor and make use of the tool of differential equations for the description of the deforma-
tion of the material. However, there exist broad classes of motion of the medium where the displacement can
be connected with the appearance of a plastic strain. Experiments with various materials show that the mech-
anism of plastic strain is connected with localization of shear along certain surfaces {1, 2]. The latter signi-
fies that on these certain surfaces the displacement vector experiences a violent break, In the general case
this circumstance turns out to be important and must be taken into account when describing plastic deforma-
tion., Making certain assumptions which are justified from a mechanical viewpoint, we can describe a non-
smooth displacement field by fairly simple means with the aid of a collection of smooth functions.

As an illustration, we shall consider the case of a single function of a single variable. By F(x) we denote
the original function having a violent break at the points x;. We assume that the distances between the breaks
are small, that the function F(x) is sufficiently smooth between the break points, and that the values of the de-
rivatives of F(x) on the right and on the left of the break points are equal to one another; i.e., the function

P (2) for  zo i,
p(x)={F'(zi:t0) for z=uz

is sufficiently smooth.
Let f(x} be a smooth function satisfying the conditions f(x;) =F (x; +0) and P (z) = yp (z)dz. Then the

original function F(x) can be characterized by a pair of smooth functions f(x), P{x) and a sequence of break
points x; (Fig. 1). The function f(x) has the meaning of averaging the original function, and it characterizes
(with a certain accuracy) the values of F(x) over the entire domain of definition, The function P'(x) — f'(x)
characterizes the difference in local behavior of the original and the averaged functions, and for given break
points determines the magnitude of jumps of the original function, Thus, a jump of the function F(x) at the
point x; , , with an accuracy up to 1 equals { f'(x;) — P'(Xi)}li where [ =xy44 — xi is the distance between the
adjacent break points,

Analogously, we shall consider the case of a vector functionV=V,e,+V,e, of the vector argument r =
X{€q+ X9€y (€4, €4 is the orthonormed basis). Let I <1 be a characteristic dimension of the regions where the
function V{r) is sufficiently smooth, We shall call such regions elements., We assume that for the original
functions there exists a smooth average v(r) such that v(ri) =V (r;) at the centers of elements ri; on the bound-
ary separating elements with the centers at the points r;, rj, ; the break of V(r) with an accuracy up to Iri+1 -
ri]? equals A(r)(rj 44— ri), where A is a tensor of the second rank with smooth components Akm, k, m=1, 2. A
smooth vector field vi{r) and a tensor field A(r) are put in correspondence with the original field V(r). It can
be shown that the description thus introduced imposes the following constraint on the class of discontinuous
functions: Onthe break lines the values of one-sided derivatives 0V, /<9xm must be equal to one ancther. It
is obvious that
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